Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Org Chem ; 84(11): 6697-6708, 2019 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-31083938

RESUMO

A library of 2(a),3(a/e)-difluorosialic acids and their C-5 and/or C-9 derivatives were chemoenzymatically synthesized. Pasteurella multocida sialic acid aldolase (PmAldolase), but not its Escherichia coli homologue (EcAldolase), was found to catalyze the formation of C5-azido analogue of 3-fluoro(a)-sialic acid. In comparison, both PmAldolase and EcAldolase could catalyze the synthesis of 3-fluoro(a/e)-sialic acids and their C-9 analogues although PmAldolase was generally more efficient. The chemoenzymatically synthesized 3-fluoro(a/e)-sialic acid analogues were purified and chemically derivatized to form the desired difluorosialic acids and derivatives. Inhibition studies against several bacterial sialidases and a recombinant human cytosolic sialidase hNEU2 indicated that sialidase inhibition was affected by the C-3 fluorine stereochemistry and derivatization at C-5 and/or C-9 of the inhibitor. Opposite to that observed for influenza A virus sialidases and hNEU2, compounds with axial fluorine at C-3 were better inhibitors (up to 100-fold) against bacterial sialidases compared to their 3F-equatorial counterparts. While C-5-modified compounds were less-efficient antibacterial sialidase inhibitors, 9-N3-modified 2,3-difluoro-Neu5Ac showed increased inhibitory activity against bacterial sialidases. 9-Azido-9-deoxy-2-(e)-3-(a)-difluoro- N-acetylneuraminic acid [2(e)3(a)DFNeu5Ac9N3] was identified as an effective inhibitor with a long effective duration selectively against pathogenic bacterial sialidases from Clostridium perfringens (CpNanI) and Vibrio cholerae.


Assuntos
Inibidores Enzimáticos/farmacologia , Neuraminidase/antagonistas & inibidores , Pasteurella multocida/enzimologia , Ácidos Siálicos/farmacologia , Configuração de Carboidratos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Neuraminidase/metabolismo , Ácidos Siálicos/síntese química , Ácidos Siálicos/química
2.
Bioorg Med Chem ; 26(21): 5751-5757, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30389408

RESUMO

Sialidases or neuraminidases are enzymes that catalyze the cleavage of terminal sialic acids from oligosaccharides and glycoconjugates. They play important roles in bacterial and viral infection and have been attractive targets for drug development. Structure-based drug design has led to potent inhibitors against neuraminidases of influenza A viruses that have been used successfully as approved therapeutics. However, selective and effective inhibitors against bacterial and human sialidases are still being actively pursued. Guided by crystal structural analysis, several derivatives of 2-deoxy-2,3-didehydro-N-acetylneuraminic acid (Neu5Ac2en or DANA) were designed and synthesized as triazole-linked transition state analogs. Inhibition studies revealed that glycopeptide analog E-(TriazoleNeu5Ac2en)-AKE and compound (TriazoleNeu5Ac2en)-A were selective inhibitors against Vibrio cholerae sialidase, while glycopeptide analog (TriazoleNeu5Ac2en)-AdE selectively inhibited Vibrio cholerae and A. ureafaciens sialidases.


Assuntos
Inibidores Enzimáticos/química , Glicopeptídeos/química , Neuraminidase/antagonistas & inibidores , Triazóis/química , Vibrio cholerae/enzimologia , Domínio Catalítico , Ensaios Enzimáticos , Inibidores Enzimáticos/síntese química , Glicopeptídeos/síntese química , Humanos , Simulação de Acoplamento Molecular , Neuraminidase/química , Triazóis/síntese química
3.
J Org Chem ; 83(18): 10798-10804, 2018 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-30105908

RESUMO

Streptococcus pneumoniae sialidase SpNanB is an intramolecular trans-sialidase (IT-sialidase) and a virulence factor that is essential for streptococcal infection of the upper and lower respiratory tract. SpNanB catalyzes the formation of 2,7-anhydro- N-acetylneuraminic acid (2,7-anhydro-Neu5Ac), a potential prebiotic that can be used as the sole carbon source of a common human gut commensal anaerobic bacterium. We report here the development of an efficient one-pot multienzyme (OPME) system for synthesizing 2,7-anhydro-Neu5Ac and its derivatives. Based on a crystal structure analysis, an N-cyclohexyl derivative of 2,7-anhydro-neuraminic acid was designed, synthesized, and shown to be a selective inhibitor against SpNanB and another Streptococcus pneumoniae sialidase SpNanC. This study demonstrates a new strategy of synthesizing 2,7-anhydro-sialic acids in a gram scale and the potential application of their derivatives as selective sialidase inhibitors.


Assuntos
Biocatálise , Glicoproteínas/antagonistas & inibidores , Glicoproteínas/metabolismo , Neuraminidase/antagonistas & inibidores , Neuraminidase/metabolismo , Ácidos Siálicos/síntese química , Ácidos Siálicos/farmacologia , Streptococcus pneumoniae/enzimologia , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Modelos Moleculares , Conformação Molecular , Ácidos Siálicos/química , Especificidade por Substrato
4.
Chem Commun (Camb) ; 53(59): 8280-8283, 2017 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-28695219

RESUMO

A highly efficient chemoenzymatic method for synthesizing glycosphingolipids using α-Gal pentasaccharyl ceramide as an example is reported here. Enzymatic extension of the chemically synthesized lactosyl sphingosine using efficient sequential one-pot multienzyme (OPME) reactions allowed glycosylation to be carried out in aqueous solutions. Facile C18 cartridge-based quick (<30 minutes) purification protocols were established using minimal amounts of green solvents (CH3CN and H2O). Simple acylation in the last step led to the formation of the target glycosyl ceramide in 4 steps with an overall yield of 57%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...